20 research outputs found

    Tomographie acoustique océanique en guide d'ondes : de l'utilisation des temps à celle des angles

    No full text
    In the ocean, temperature changes induce sound-speed perturbations. Ocean acoustic tomography uses the fluctuations of recorded acoustic signals, to map those sound-speed perturbations. To this end, sound-speed perturbations are classically related to the acoustic-wave travel-times measured on the records. This study suggests an alternative method to perform acoustic thermometry based on acoustic-wave propagation directions. It allows imaging a shallow-water waveguide (~100 m), at small scale (1 to 10 km), with high spatial resolution (10 m in range, 2 m in depth). In this context, wideband (~1.5 kHz) low frequency (~1 kHz) acoustic waves propagates along multiple paths similar to spatially « fat » geometrical rays. Using a pair of arrays (source/receiver) and the double-beamforming processing to separate acoustic signals coming from different paths and measure their: travel-time (TT), directions-of-arrival (DOA) and directions-of-departure (DOD). Under the hypothesis of small perturbations, TP, DOA and DOD variations are linearly related to sound-speed perturbations in an analytical way. This formulation based on Born's diffraction physics at the first order uses kernel functions called: the time-angle sensitivity kernels (T-A-SK). The T-A-SK model is then combined to classical inversion methods to retrieve sound-speed perturbations from TT, DOA and DOD variations. The methods developed here have been validated on simulated data, and applied on real small-scale data coming from the ultrasonic tank of the ISTerre, Grenoble.Dans l'océan, les changements de température induisent des perturbations de la vitesse de propagation des ondes acoustiques. La tomographie acoustique océanique utilise les fluctuations de signaux acoustiques enregistrés pour cartographier ces perturbations de vitesse du son. Cette étude propose une méthode alternative utilisant la direction de propagation des ondes acoustiques (plutôt que les temps de propagation utilisés classiquement) pour imager un guide d'onde océanique peu profond (~100 m), petite échelle (1 à 10 km), avec une haute résolution spatiale (10 m horizontalement, 2 m en profondeur). Dans ce contexte, les ondes acoustiques basse fréquence (~1 kHz) à large bande spectrale (~1.5 kHz) se propagent selon des trajectoires multiples assimilables à des rayons géométriques épais spatialement. L'utilisation d'un couple d'antennes (émission/réception) et de la double formation de voies permet de séparer les signaux en provenance des différents trajets acoustiques et de mesurer leur : temps de propagation (TP), direction d'arrivée (DA) et direction de départ (DD). Dans l'hypothèse de faibles perturbations, les variations des TP, DA et DD sont reliées linéairement aux perturbations de la distribution de vitesse du son de manière analytique. Cette formulation, basée sur la physique de la diffraction de Born au 1er ordre, utilise des fonctions noyaux appelées : noyaux de sensibilité temps-angles (NSTA). Les méthodes classiques d'inversion permettent alors de retrouver les perturbations de vitesse à partir des variations de TP, DA et DD en utilisant les NSTA. Les méthodes développées ont été validées sur données simulées, puis appliquées à des données réelles d'expériences à échelle réduites réalisées dans la cuve ultrasonore de l'ISTerre, Grenoble

    Time-angle ocean acoustic tomography using sensitivity kernels: The forward problem

    Get PDF
    International audienceBroadband acoustic signals around 1 kHz propagate through shallow water oceanic waveguides of ~100 m in depth and ~2 km in range as multiple ray-like wavefronts. These acoustic arrivals can be characterized by the following observables: travel-time (TT), direction-of-arrival (DOA) and direction-of-departure (DOD). By applying double-beamforming on the point-to-point signals recorded between two source-receiver arrays, the acoustic contribution of each arrival can be separated from the multi-reverberated data and the TT, DOA and DOD observable variations are accurately measured. This study deals with the use of time-angle sensitivity kernels (TASK) to estimate the observable variations induced by sound speed perturbations in the waveguide. This approach is based on the first order Born approximation and takes into account the finite-frequency effects associated with wave propagation. The robustness the TASK approach is analyzed and compared to numerical parabolic equation simulations involving different sound speed perturbations. For example, parameters such as the perturbation location, the value and shape of the perturbation in the waveguide are modified. The combination of several perturbations and the influence of the source-receiver array apertures on the TT, DOA and DOD estimates are also studied

    Direction-of-arrival, direction-of-departure and travel-time sensivity kernels obtained through double beamforming in shallow water

    Get PDF
    International audienceIn an oceanic waveguide, local sound speed variations induce acoustic path changes (angles, amplitudes, delays, etc...). Using vertical arrays in emission and reception and double beamforming, it is possible, for each path, to jointly track these changes in term of travel-time (τ), reception angle (θr) and emission angle (θe). In order to perform ocean acoustic tomography using these observables, we build sensitivity kernels which link the variations of these observables, measured after double beamforming, to sound speed variations. The construction of these kernels is made in two steps. A first order Born approximation of the Green's function is firstly used to derive the Helmholtz equation and obtain the link between the variations of the sound speed distribution and the variations of the received signal. Then, a first order Taylor development in the (t,θr,θe) signal space leads to a linear relation between the variations of the received signal and the variations of the measured travel-time, eception angle and emission angle of each acoustic path after double beamforming. This paper establishes the mathematical expression of sensitivity kernels and results obtained with synthetic data are shown and discussed

    Time-angle sensitivity kernels for sound-speed perturbations in a shallow ocean

    Get PDF
    International audienceAcoustic waves traveling in a shallow-water waveguide produce a set of multiple paths that can be characterized as a geometric approximation by their travel time (TT), direction of arrival (DOA), and direction of departure (DOD). This study introduces the use of the DOA and DOD as additional observables that can be combined to the classical TT to track sound-speed perturbations in an oceanic waveguide. To model the TT, DOA, and DOD variations induced by sound-speed perturbations, the three following steps are used: (1) In the first-order Born approximation, the Fr echet kernel provides a linear link between the signal fluctuations and the sound-speed perturbations; (2) a double-beamforming algorithm is used to transform the signal fluctuations received on two source-receiver arrays in the time, receiver-depth, and source-depth domain into the eigenray equivalent measured in the time, reception-angle and launch angle domain; and finally (3) the TT, DOA, and DOD variations are extracted from the double-beamformed signal variations through a first-order Taylor development. As a result, time-angle sensitivity kernels are defined and used to build a linear relationship between the observable variations and the sound-speed perturbations. This approach is validated with parabolic-equation simulations in a shallow-water ocean context

    Time-angle ocean acoustic tomography using sensitivity kernels: Numerical and experimental inversion results

    Get PDF
    International audienceIn shallow water acoustic tomography, broadband mid-frequency acoustic waves (1 to 5 kHz) follow multiple ray-like paths to travel through the ocean. Travel-time (TT) variations associated to these raypaths are classically used to estimate sound speed perturbations of the water column using the ray theory. In this shallow water environment, source and receiver arrays, combined with adapted array processing, provide the measurement of directions-of-arrival (DOA) and directions-of-departure (DOD) of each acoustic path as new additional observables to perform ocean acoustic tomography. To this aim, the double-beamforming technique is used to extract the TT, DOA and DOD variations from the array-to-array acoustic records. Besides, based on the first order Born approximation, we introduce the time-angle sensitivity kernels to link sound speed perturbations to the three observable variations. This forward problem is then inverted with the maximum a posteriori method using both the extracted-observable variations and the proposed sensitivity kernels. Inversion results obtained on numerical data, simulated with a parabolic equation code, are presented. The inversion algorithm is performed with the three observables separately, namely TT, DOA and DOD. The three observables are then used jointly in the inversion process. The results are discussed in the context on ocean acoustic tomography

    Mesure d'angles par double formation de voies appliquée à la tomographie acoustique sous-marine

    Get PDF
    National audienceCet article traite de la tomographie acoustique océanique utilisant les angles de départ et les angles d'arrivée des ondes sonores. Dans ce but, deux antennes (en émission et en réception) sont utilisées pour séparer les arrivées acoustiques et mesurer leur temps de trajet, direction de réception et direction d'émission. Ces mesures sont ensuite utilisées dans un processus d'inversion visant à retrouver la carte des variations de vitesse du son au sein du milieu de propagation (guide d'onde océanique peu profond). L'apport de ces travaux est double : (1) ils montrent qu'il est possible de faire de la tomographie acoustique océanique en utilisant les angles d'émission et de réception, ce qui n'avait jamais été fait à ce jour ; (2) ils permettent de se passer de synchronisation émetteur-récepteur haute précision, qui est un problème technique délicat à régler en pratique. Cet article présente des résultats de tomographie acoustique océanique sur des données simulées. Les résultats obtenus à partir des seuls angles d'émission et de réception sont équivalents à ceux obtenus à partir des temps de trajet des ondes acoustiques, nécessitant la synchronisation émetteur-récepteur

    Analyzing sound speed fluctuations in shallow water from group-velocity versus phase-velocity data representation

    Get PDF
    International audienceData collected over more than eight consecutive hours between two source-receiver arrays in a shallow water environment are analyzed through the physics of the waveguide invariant. In particular, the use of vertical arrays on both the source and receiver sides provides source and receiver angles in addition to travel-times associated with a set of eigenray paths in the waveguide. From the travel-times and the source-receiver angles, the eigenrays are projected into a group-velocity versus phase-velocity (Vg-Vp) plot for each acquisition. The time evolution of the Vg-Vp representation over the 8.5-h long experiment is discussed. Group speed fluctuations observed for a set of eigenrays with turning points at different depths in the water column are compared to the Brunt-Väisälä frequency

    Tomographie acoustique océanique en guide d'ondes : de l'utilisation des temps à celle des angles

    No full text
    In the ocean, temperature changes induce sound-speed perturbations. Ocean acoustic tomography uses the fluctuations of recorded acoustic signals, to map those sound-speed perturbations. To this end, sound-speed perturbations are classically related to the acoustic-wave travel-times measured on the records. This study suggests an alternative method to perform acoustic thermometry based on acoustic-wave propagation directions. It allows imaging a shallow-water waveguide (~100 m), at small scale (1 to 10 km), with high spatial resolution (10 m in range, 2 m in depth). In this context, wideband (~1.5 kHz) low frequency (~1 kHz) acoustic waves propagates along multiple paths similar to spatially « fat » geometrical rays. Using a pair of arrays (source/receiver) and the double-beamforming processing to separate acoustic signals coming from different paths and measure their: travel-time (TT), directions-of-arrival (DOA) and directions-of-departure (DOD). Under the hypothesis of small perturbations, TP, DOA and DOD variations are linearly related to sound-speed perturbations in an analytical way. This formulation based on Born's diffraction physics at the first order uses kernel functions called: the time-angle sensitivity kernels (T-A-SK). The T-A-SK model is then combined to classical inversion methods to retrieve sound-speed perturbations from TT, DOA and DOD variations. The methods developed here have been validated on simulated data, and applied on real small-scale data coming from the ultrasonic tank of the ISTerre, Grenoble.Dans l'océan, les changements de température induisent des perturbations de la vitesse de propagation des ondes acoustiques. La tomographie acoustique océanique utilise les fluctuations de signaux acoustiques enregistrés pour cartographier ces perturbations de vitesse du son. Cette étude propose une méthode alternative utilisant la direction de propagation des ondes acoustiques (plutôt que les temps de propagation utilisés classiquement) pour imager un guide d'onde océanique peu profond (~100 m), petite échelle (1 à 10 km), avec une haute résolution spatiale (10 m horizontalement, 2 m en profondeur). Dans ce contexte, les ondes acoustiques basse fréquence (~1 kHz) à large bande spectrale (~1.5 kHz) se propagent selon des trajectoires multiples assimilables à des rayons géométriques épais spatialement. L'utilisation d'un couple d'antennes (émission/réception) et de la double formation de voies permet de séparer les signaux en provenance des différents trajets acoustiques et de mesurer leur : temps de propagation (TP), direction d'arrivée (DA) et direction de départ (DD). Dans l'hypothèse de faibles perturbations, les variations des TP, DA et DD sont reliées linéairement aux perturbations de la distribution de vitesse du son de manière analytique. Cette formulation, basée sur la physique de la diffraction de Born au 1er ordre, utilise des fonctions noyaux appelées : noyaux de sensibilité temps-angles (NSTA). Les méthodes classiques d'inversion permettent alors de retrouver les perturbations de vitesse à partir des variations de TP, DA et DD en utilisant les NSTA. Les méthodes développées ont été validées sur données simulées, puis appliquées à des données réelles d'expériences à échelle réduites réalisées dans la cuve ultrasonore de l'ISTerre, Grenoble

    Ocean acoustic tomography in waveguides : from the use of travel-times to the use of angles.

    No full text
    Dans l'océan, les changements de température induisent des perturbations de la vitesse de propagation des ondes acoustiques. La tomographie acoustique océanique utilise les fluctuations de signaux acoustiques enregistrés pour cartographier ces perturbations de vitesse du son. Cette étude propose une méthode alternative utilisant la direction de propagation des ondes acoustiques (plutôt que les temps de propagation utilisés classiquement) pour imager un guide d'onde océanique peu profond (~100 m), petite échelle (1 à 10 km), avec une haute résolution spatiale (10 m horizontalement, 2 m en profondeur). Dans ce contexte, les ondes acoustiques basse fréquence (~1 kHz) à large bande spectrale (~1.5 kHz) se propagent selon des trajectoires multiples assimilables à des rayons géométriques épais spatialement. L'utilisation d'un couple d'antennes (émission/réception) et de la double formation de voies permet de séparer les signaux en provenance des différents trajets acoustiques et de mesurer leur : temps de propagation (TP), direction d'arrivée (DA) et direction de départ (DD). Dans l'hypothèse de faibles perturbations, les variations des TP, DA et DD sont reliées linéairement aux perturbations de la distribution de vitesse du son de manière analytique. Cette formulation, basée sur la physique de la diffraction de Born au 1er ordre, utilise des fonctions noyaux appelées : noyaux de sensibilité temps-angles (NSTA). Les méthodes classiques d'inversion permettent alors de retrouver les perturbations de vitesse à partir des variations de TP, DA et DD en utilisant les NSTA. Les méthodes développées ont été validées sur données simulées, puis appliquées à des données réelles d'expériences à échelle réduites réalisées dans la cuve ultrasonore de l'ISTerre, Grenoble.In the ocean, temperature changes induce sound-speed perturbations. Ocean acoustic tomography uses the fluctuations of recorded acoustic signals, to map those sound-speed perturbations. To this end, sound-speed perturbations are classically related to the acoustic-wave travel-times measured on the records. This study suggests an alternative method to perform acoustic thermometry based on acoustic-wave propagation directions. It allows imaging a shallow-water waveguide (~100 m), at small scale (1 to 10 km), with high spatial resolution (10 m in range, 2 m in depth). In this context, wideband (~1.5 kHz) low frequency (~1 kHz) acoustic waves propagates along multiple paths similar to spatially « fat » geometrical rays. Using a pair of arrays (source/receiver) and the double-beamforming processing to separate acoustic signals coming from different paths and measure their: travel-time (TT), directions-of-arrival (DOA) and directions-of-departure (DOD). Under the hypothesis of small perturbations, TP, DOA and DOD variations are linearly related to sound-speed perturbations in an analytical way. This formulation based on Born's diffraction physics at the first order uses kernel functions called: the time-angle sensitivity kernels (T-A-SK). The T-A-SK model is then combined to classical inversion methods to retrieve sound-speed perturbations from TT, DOA and DOD variations. The methods developed here have been validated on simulated data, and applied on real small-scale data coming from the ultrasonic tank of the ISTerre, Grenoble

    Estimation of time and angle variations for perturbations in an acoustic oceanic waveguide

    No full text
    International audienceVariations of travel-times (TT), directions-of-arrival (DOA) and directions-of-departure (DOD) of acoustic waves are conventional observables used to recover information on local underwater sound speed perturbations. To compute these variations, acoustic waves are propagated between a source array and a receiver array, in both the unperturbed and perturbed states of the medium. The recorded signals undergo a two-step processing: 1) the acoustic-arrival separation and 2) the observable extraction, where precision is essential. We propose contributions for both steps. For the acoustic-arrival separation, we propose a version of the double beamforming (DBF) method, which we have modified by introducing oscillations along the angle dimensions. As suggested by studies done in the field of medical ultrasound imaging, lateral oscillations can be obtained in DBF by using specific aperture apodization functions. It has been shown that this feature facilitates the observable extraction later on. For the observable extraction, we propose two displacement estimators, both working with phase information. The first one is based on the Fourier transform of the signal intercorrelation-function, and can be applied on data processed by either classical DBF or DBF with lateral oscillations. The latter takes benefit of specific lateral-oscillation models which enable to explicit an analytic relationship of the observable variations. These estimators have been tested on simulations with a double-array configuration. Different waves travelling through mediums having homogenous and inhomogeneous sound speed were considered. The robustness against noise has also been evaluated. The results obtained show that the first estimator (based on intercorrelation) provides precise results with both classical DBF and DBF with lateral oscillations, but is sensitive to noise. The second estimator (analytic) is more robust to noise, but can only be used with the DBF with lateral oscillations
    corecore